Comparison of Four Spatial Interpolation Methods for Estimating Soil Moisture in a Complex Terrain Catchment
نویسندگان
چکیده
Many spatial interpolation methods perform well for gentle terrains when producing spatially continuous surfaces based on ground point data. However, few interpolation methods perform satisfactorily for complex terrains. Our objective in the present study was to analyze the suitability of several popular interpolation methods for complex terrains and propose an optimal method. A data set of 153 soil water profiles (1 m) from the semiarid hilly gully Loess Plateau of China was used, generated under a wide range of land use types, vegetation types and topographic positions. Four spatial interpolation methods, including ordinary kriging, inverse distance weighting, linear regression and regression kriging were used for modeling, randomly partitioning the data set into 2/3 for model fit and 1/3 for independent testing. The performance of each method was assessed quantitatively in terms of mean-absolute-percentage-error, root-mean-square-error, and goodness-of-prediction statistic. The results showed that the prediction accuracy differed significantly between each method in complex terrain. The ordinary kriging and inverse distance weighted methods performed poorly due to the poor spatial autocorrelation of soil moisture at small catchment scale with complex terrain, where the environmental impact factors were discontinuous in space. The linear regression model was much more suitable to the complex terrain than the former two distance-based methods, but the predicted soil moisture changed too sharply near the boundary of the land use types and junction of the sunny (southern) and shady (northern) slopes, which was inconsistent with reality because soil moisture should change gradually in short distance due to its mobility in soil. The most optimal interpolation method in this study for the complex terrain was the hybrid regression kriging, which produced a detailed, reasonable prediction map with better accuracy and prediction effectiveness.
منابع مشابه
Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signature of snow and complex terrain
The controls on the spatial distribution of soil moisture include static and dynamic variables. The superposition of static and dynamic controls can lead to different soil moisture patterns for a given catchment during wetting, draining, and drying periods. These relationships can be further complicated in snow-dominated mountain regions where soil water input by precipitation is largely dictat...
متن کاملEstimating the Saturated Hydraulic Conductivity of Soil Using Gene Expression Programming Method and Comparing It with the Pedotransfer Functions
Saturated hydraulic conductivity of soil is an important physical property of soil that affects water movement in soil, Since the measurement of saturated hydraulic conductivity by direct methods in the field or in the laboratory is hard, time-consuming and costly, the indirect methods are being used.The aim of this study is to estimate the saturated hydraulic conductivity from other soil prope...
متن کاملAn Extended Kriging Method to Interpolate Near-Surface Soil Moisture Data Measured by Wireless Sensor Networks
In the practice of interpolating near-surface soil moisture measured by a wireless sensor network (WSN) grid, traditional Kriging methods with auxiliary variables, such as Co-kriging and Kriging with external drift (KED), cannot achieve satisfactory results because of the heterogeneity of soil moisture and its low correlation with the auxiliary variables. This study developed an Extended Krigin...
متن کاملDetermining Curve Number and Estimating Runoff Yield In HESARAK Catchment
The process of precipitation – runoff of each basin, is influenced by hydrologic, geomorphology conditions, geological formation and vegetation. There are different methods in drainage basins. One way to estimate the runoff height is Curve Number (CN) method. That reperesents the hydrological behavior of basin. data were collected for statistics of climate and then topographic map of 1: 25000 a...
متن کاملHigh resolution passive microwave response to landscape controls influencing soil moisture patterns: A case study for the Livingstone Creek Catchment
The 46km Livingstone Creek Catchment in south-eastern Australia was flown with a passive microwave airborne remote sensor (Polarimetric L-band Multibeam Radiometer, PLMR) as part of the National Airborne Field Experiment in 2006 with a spatial resolution of ~ 200m. The catchment was experiencing extreme drought conditions leading up to the experiment and as a result ground cover in the catchmen...
متن کامل